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Rapid progression of human socio-economic activities has altered the structure and
function of natural landscapes. Species that rely on multiple, complementary habitat
types (i.e., landscape complementation) to complete their life cycle may be especially
at risk. However, such landscape complementation has received little attention in the
context of landscape connectivity modeling. A previous study on flower longhorn beetles
(Cerambycidae: Lepturinae) integrated landscape complementation into a continuous
habitat suitability ‘surface’, which was then used to quantify landscape connectivity
between pairs of sampling sites using gradient-surface metrics. This connectivity model
was validated with molecular genetic data collected for the banded longhorn beetle
(Typocerus v. velutinus) in Indiana, United States. However, this approach has not been
compared to alternative models in a landscape genetics context. Here, we used a
discrete land use/land cover map to calculate landscape metrics related to landscape
complementation based on a patch mosaic model (PMM) as an alternative to the
previously published, continuous habitat suitability model (HSM). We evaluated the HSM
surface with gradient surface metrics (GSM) and with two resistance-based models
(RBM) based on least cost path (LCP) and commute distance (CD), in addition to an
isolation-by-distance (IBD) model based on Euclidean distance. We compared the ability
of these competing models of connectivity to explain pairwise genetic distances (RST)
previously calculated from ten microsatellite genotypes of 454 beetles collected from 17
sites across Indiana, United States. Model selection with maximum likelihood population
effects (MLPE) models found that GSM were most effective at explaining pairwise
genetic distances as a proxy for gene flow across the landscape, followed by the
landscape metrics calculated from the PMM, whereas the LCP model performed worse
than both the CD and the isolation by distance model. We argue that the analysis of a
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continuous HSM with GSM might perform better because of their combined ability to
effectively represent and quantify the continuous degree of landscape complementation
(i.e., availability of complementary habitats in vicinity) found at and in-between sites, on
which these beetles depend. Our findings may inform future studies that seek to model
habitat connectivity in complex heterogeneous landscapes as natural habitats continue
to become more fragmented in the Anthropocene.

Keywords: landscape configuration, maximum-likelihood population effects, surface metrics, landscape metrics,
gradient surface model, patch mosaic model, isolation-by-resistance, complementary habitat

INTRODUCTION

Rapid progression of landscape changes associated with human
socio-economic activities in the Anthropocene alters the
structure and function of natural landscapes (DeFries et al.,
2004; Lee et al., 2006; Hobbs et al., 2009). One such direct
impact is the transformation of ecosystem edges and ecotones
(transition zones between ecosystems) (Fortin et al., 2000; Stewart
et al., 2013), which may disturb nutrient and phenological
cycles (Décamps and Naiman, 1990) of different taxa. For
instance, land-use change and disturbance have threatened
functional diversity in terrestrial arthropods (Birkhofer et al.,
2015), economic and agricultural development has impacted
microbial ecosystems and communities (Pepper et al., 2015),
contributed to landscape erosion and aridification (Zerboni and
Nicoll, 2019), and altered ecosystem function through shifts in
key phenological events like flowering (Calinger, 2015). At the
landscape level, anthropogenic impacts have been acknowledged
among main drivers of habitat loss and fragmentation leading
to habitat isolation, and increasing barriers to movement of
organisms and their genes across the landscape (Fortin et al.,
2000; Lindenmayer and Fischer, 2007). In order to better manage
landscapes that support human socio-economic development
and maintain natural habitats that support biodiversity, we
need an effective and accurate quantification of landscape
heterogeneity and connectivity at biologically meaningful scales.

Landscape genetics provides explicit methods for quantifying
the effects of landscape spatial heterogeneity on gene flow and
spatial genetic structure of organisms (Storfer et al., 2007).
Historically, landscape genetic studies have been constrained
by cost-prohibitive genetic data collection (Shendure and
Aiden, 2012), limited landscape-scale habitat information, and
difficulties in characterizing spatial heterogeneity at a meaningful
scale and linking that heterogeneity to genetic patterns. However,
advances in DNA isolation techniques (e.g., Davey et al., 2011),
reductions in genetic data-collection costs (Shendure and Aiden,
2012), and increasing access to large landscape-level datasets [e.g.,
the National Land Cover Database (NLCD) in the United States
or large-scale digital elevation models] have resulted in lower
costs and increased data availability. Therefore, finding optimal

Abbreviations: AIC, Akaike’s Information Criterion; CD, commute distance;
GSM, gradient surface metrics; HSM, habitat suitability model; IBD, isolation-
by-distance; LCP, least cost path; MLPE, maximum likelihood population effects;
NDVI, normalized difference vegetation index; NLCD, National Land Cover
Dataset; PMM, patch mosaic model; RBM, resistance-based models; REML,
restricted maximum likelihood.

modeling approaches and metrics to represent the environment
and assess genetic patterns of species across the landscape has
become a new challenge.

Capturing biologically relevant landscape features for building
a reliable connectivity model is a challenging task that
depends on the species’ distribution and life history. This
task may be particularly challenging in species that require
landscape complementation, where different life history stages
rely on multiple, complementary habitat types (e.g., Dunning
et al., 1992; Pope et al., 2000; Mandelik et al., 2012). While
landscape complementation has received little attention in the
context of landscape connectivity modeling (and vice versa) it
provides a unique context to examine the ability of different
conceptualizations of landscape heterogeneity and connectivity
modeling approaches to explain genetic patterns across a
landscape. In this study we compare the ability of fundamentally
different descriptors of habitat heterogeneity (Figure 1) to
explain genetic dissimilarities among populations of a species
reliant on landscape complementation – the banded longhorn
beetle [Typocerus v. velutinus (Olivier)].

Banded longhorn beetles require multiple phenological
habitats throughout their life-history that can only be supported
by landscape complementation. The species’ requirements for
completing its life cycle consist of open flowering habitat
(shrublands, grasslands, or pastures), which is required for adults’
feeding and mating, adjacent to forested woodlands that contain
dead and decaying wood, which supports larval development
(Linsley, 1959).

To explain pairwise genetic distances as a proxy of
gene flow between sampling locations (sites), we evaluated
landscape heterogeneity and connectivity using discrete and
continuous landscape representations. For the discrete landscape
representation, we used a categorical land use/land cover map
(NLCD 2011; Homer et al., 2015) to calculate landscape metrics
based on the PMM. The PMM has routinely been used to
describe landscape composition (amount of each habitat type)
and configuration (spatial arrangement of habitat types) (e.g.,
Pringle et al., 1988; Carrara et al., 2015). This approach continues
to have applicability (Fourcade et al., 2017) due to its conceptual
simplicity and consistency with statistical analysis frameworks
(e.g., ANOVA) (McGarigal et al., 2009). However, PMM has
been criticized for its over-simplicity, and lacking the capacity to
describe the continuous nature of habitat heterogeneity in natural
landscapes (McGarigal et al., 2009).
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FIGURE 1 | Conceptual framework of various landscape modeling approaches in landscape genetics illustrating the difference between study design focus (site
specific vs. landscape), and modeling approaches (categorical vs. continuous) representation of habitat in the landscape.

A few early papers represented landscapes as gradients
and not as discrete land use classes (Jeltsch et al., 1970;
McIntyre and Barrett, 1992; Manning et al., 2004; Lindenmayer
and Fischer, 2007), and this approach has become more
widely applied in recent years (e.g., McGarigal et al., 2009;
Abdel Moniem and Holland, 2013). A gradient approach
is directly applicable in many natural landscapes that are
dominated by gradual changes, whereas many agricultural
landscapes are compatible with a PMM due to anthropogenic
patterns of land use that create discrete patches. Abdel
Moniem and Holland (2013) modeled habitat suitability for
flower visiting longhorn beetles (Cerambycidae: Lepturinae) that
require landscape complementation by evaluating discrete and
continuous landscape features simultaneously in a moving-
window analysis. This resulted in a continuous HSM that
can be analyzed as a gradient surface. The HSM can thus
represent complex landscape characteristics (e.g., Abdel Moniem
and Holland, 2013), including the nearby availability of
complementary habitat types.

Here, we used the HSM previously derived by Abdel
Moniem and Holland (2013) that describes gradients in habitat
suitability for flower-visiting longhorn beetles as a continuous
surface. The model considered habitat complementarity by
incorporating discrete (e.g., NLCD), and continuous (e.g.,
digital elevation models or DEM, curvature index, solar
insolation, NDVI, and splitting index) landscape variables

(see Abdel Moniem and Holland, 2013 for more details). These
variables represent aspects of habitat quality and the local
availability of resources for both larval and adult development.
Abdel Moniem and Holland (2013) analyzed the topology of
this HSM to quantify landscape heterogeneity using GSM.
These metrics describe different aspects of surface roughness,
the shape of the surface height distributions, surface angular
texture, and surface radial texture and magnitude (reviewed
in McGarigal et al., 2009; Abdel Moniem et al., 2016). The
GSM were found to be powerful descriptors of the continuous,
undulating shape of habitat suitability surfaces and effective
predictors of the community composition of longhorn beetles
(Abdel Moniem and Holland, 2013).

In the landscape genetic literature, landscape connectivity
is commonly assessed through resistance modeling based
on the idea that different landscape features pose different
levels of resistance to organism movement (Adriaensen
et al., 2003; McRae, 2006). Resistance values, which are
quantitative by nature, can be assigned to discrete land-
use/land-cover classes (McRae et al., 2008). Alternatively, a
resistance surface (or its inverse, conductance) can be derived
by transforming a HSM model (Keeley et al., 2016). Either
way, the resistance of the intervening landscape between
any pair of sampling locations can then be evaluated
either as a single-best corridor (LCP; Adriaensen et al.,
2003), or as CD based on circuit theory (McRae, 2006;
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McRae et al., 2008; Shah and McRae, 2008), which considers
all possible paths.

This study aimed to compare approaches of modeling
functional connectivity for an organism that requires
multiple, complementary habitat types to complete its life
cycle, starting from discrete (PMM) and continuous (HSM)
landscape representations (Figure 1). The PMM landscape was
characterized by two different methods using landscape metrics
related to landscape complementation. The HSM landscape
representation published by Abdel Moniem and Holland
(2013) was evaluated with GSM, and with LCP and CD as two
alternative RBM. We then compared the ability of the different
models, including a null model of IBD, to explain genetic
distances for banded longhorn beetle among sampling sites,
using the genetic data from Abdel Moniem et al. (2016). We thus
aimed to identify which modeling approach best represented
connectivity for banded longhorn beetle, a species that requires
landscape complementation.

MATERIALS AND METHODS

Study Area and Genetic Data
We re-analyzed genetic data from Abdel Moniem et al. (2016),
which consisted of ten polymorphic microsatellite loci for
454 individuals sampled from 17 sampling locations across
Indiana (United States; Figure 2) between 2005 and 2011. These
microsatellite markers were specifically developed for longhorn
beetles in the study area and were screened for genotyping errors
and polymorphism prior to use [see Abdel Moniem et al. (2016)
for a detailed description of the methods used for developing,
screening, and amplifying these markers].

To delineate the local landscapes that individuals were most
likely to encounter while dispersing between any pair of sampling
locations, we used ellipsoids delineated by Abdel Moniem et al.
(2016) based on a correlated random walk approach (Okubo
and Kareiva, 2001; Koh et al., 2013). Successful correlated
random walks (i.e., walks that started at sampling location
i and were able to reach sampling location j using specific
distributions of turning angle, step length, and total number
of steps between sites separated from each other by various
distances) were used to estimate the parameters of an ellipsoid
connecting the two sampling locations. Using these parameters,
we clipped a total of 136 ellipsoids connecting all possible pairs
of sampling locations and quantified the heterogeneity within
each of these local landscapes with the different approaches. As
the response variable, we quantified pairwise genetic distance
between sampling locations with an RST dissimilarity matrix,
following Abdel Moniem et al. (2016). RST accounts for allele size
differences by assuming a stepwise mutation model of marker
evolution (Slatkin, 1995) and was consistently found to be a
better proxy for gene flow for longhorn beetles than Wright’s
FST (Abdel Moniem et al., 2016). However, because the choice
of the genetic distance may influence the model outputs, we also
tested proportion of shared alleles (DPS; Bowcock et al., 1994;
Chapuis and Estoup, 2006) as a measure of genetic distance
between sampling sites. DPS relies on the infinite allele model

FIGURE 2 | A map of Indiana showing locations of the study sites on a NLCD
map. NLCD layer was reclassified into three classes of considered land cover;
habitat (all forests), complementary habitat (shrublands, grasslands or
pastures), and non-habitat (remaining land-cover classes). Black circles
indicate sampling locations.

(Nei et al., 1976) and was found to produce lower model fits
based on R2 values, and resulted in slightly different landscape
models’ structure and ranking (see Supplementary Material for
DPS results).

Habitat Suitability Model and Gradient
Surface Metrics
We used the same habitat suitability model surface (HSM;
Figure 3) as Abdel Moniem et al. (2016), which was derived
through a moving-window analysis of six GIS layers that were
chosen to represent both larval and adult biological and physical
requirements: percentage forest, landscape splitting index, NDVI,
digital elevation model, curvature index, and solar insolation.
For each layer, the mean was calculated within a square moving
window with 2.1 km edge length. The first three biological layers
represent forest fragmentation and health and the latter three
geophysical layers describe topography, slope, and insolation,
which may also be important for the species (Abdel Moniem and
Holland, 2013; Abdel Moniem et al., 2016). In this approach,
complementarity was addressed by incorporating the percent
forest and NDVI layers as descriptors of the primary habitat.
Complementary habitat, which consists of open areas with
flowering resources within and around forest, was accounted
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FIGURE 3 | A map of Indiana showing locations of the study sites on a habitat
suitability surface for the banded longhorn beetle (adopted from Abdel
Moniem et al., 2016). Black circles indicate sampling locations.

for with the splitting index, which is an aggregation metric
that describes the degree of subdivision of the landscape
(McGarigal et al., 2009).

Gradient surface metrics describe the continuous, undulating
shape of habitat suitability surfaces, and have been shown to
be informative in describing habitat and predicting gene flow
across the landscape in this system (Abdel Moniem et al.,
2016). Here, we recalculated 10 metrics that were previously
described by Abdel Moniem et al. (2016) to characterize the HSM
surface within each of the 136 ellipsoids (see Abdel Moniem
et al., 2016 for a detailed description of individual metrics and
the methods used to calculate them, and Table 1 for a brief
description of each metric). We removed correlated metrics using
the variance inflation factor until all metrics had a VIF < 10. Only
one metric needed to be removed, resulting in nine remaining
metrics (Table 1).

Patch Mosaic Model and Landscape
Metrics
In order to describe the landscape using the PMM, we re-
classified the National Land Cover Database (NLCD 2011;

TABLE 1 | Gradient surface metrics (GSM) to describe the landscape
heterogeneity in the context of the habitat suitability model (HSM).

Metric Abbreviation Aspect of landscape described

Average surface
roughness

Sa (Non-spatial) landscape diversity

Ten-point height S10 (Non-spatial) landscape richness

Skewness Ssk Skewness of habitat quality values
(patch-based evenness)

Surface area
ratio

Sdr Ratio between surface area and flat plane
(contrast-weighted edge density).

Dominant texture
direction

Std Direction of dominant amplitude (landscape
composition and configuration).

Texture direction
index

Stdi Dominance relative to directions (variability
in distribution and spatial arrangement of
surface heights).

Radial
wavelength index

Srwi Wavelengths relative to all radial distances
(sensitive to variability in surface heights).

Fractal
dimension

Sfd Angles of the angular spectrum based on
Fourier analysis (landscape configuration)

Surface bearing
index

Sbi Measure of landscape dominance (Matrix
and patch distribution in the landscape)

Homer et al., 2015) into three different classes based on the
habitat requirements of the banded longhorn beetle (Abdel
Moniem and Holland, 2013) (Figure 2). We used data from
the 2011 NLCD census since this is the land cover most likely
experienced by the beetle populations sampled for this study. All
forest-related land cover classes were classified as “forest habitat.”
Shrublands, grasslands and pastures in the NLCD were classified
as “complementary habitat,” whereas all remaining land cover
classes were classified as “non-habitat” (we refer to this three-class
classification as PMM3). Additionally, we used an alternative
classification scheme, where we classified all “non-habitat” land
cover classes as missing values coded as ‘NA’ (we refer to this
two-class and NA classification as PMM2). Using R 3.6 (R Core
Team, 2019) and the “landscapemetrics” package (Hesselbarth
et al., 2019), we calculated 28 landscape-level metrics for each of
the 136 ellipsoids, thus describing the composition, configuration
and diversity of land cover classes between any pair of sites. We
removed two metrics (patch richness and relative patch richness)
because their values did not vary among ellipsoids, i.e., all classes
were present in all ellipsoids. For the approach classifying non-
habitat as NA values (PMM2), the interspersion and juxtaposition
index (iji) was also removed because this metric is not defined for
landscapes with less than three land cover classes. Subsequently,
we corrected for metric correlation by removing metrics one after
another, starting with metrics with the highest variance inflation
factor (VIF), until all metrics had a VIF < 10. This resulted in 7
included metrics with PMM3, and 8 with PMM2 (Table 2).

Resistance-Based Modeling
We used LCP and CD as descriptors within our RBM to evaluate
landscape connectivity between sampling sites. We used the HSM
to calculate a conductance surface, C (Eq. 1).

C = 1+H3 (modified from PK129221)
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TABLE 2 | Landscape metrics used within the context of the patch mosaic model (PMM) to describe the heterogeneity of the intervening landscape between longhorn
beetle sampling sites.

Metric Abbreviation Aspect of landscape described PMM3 PMM2

Patch density pd Landscape fragmentation X X

Interspersion and juxtaposition index iji Intermixing of land cover classes X

Patch richness density prd Diversity of land cover classes X X

Mean core area core_mn Shape and area of patches X

Mean core area index cai_mn Ratio between patch and core area X X

Splitting index split Aggregation of patches X X

Mesh index mesh Measure of patch structure X X

Mean patch area area_mn Landscape composition X

Number of patches np Landscape fragmentation X

Edge density ed Landscape configuration X

The symbol ‘X’ indicates metrics included in the analysis, separately for the classifications with three classes (PMM3; treating non-habitat as a class) and two classes
(PMM2; treating non-habitat as missing values, NA).

where C is the conductance and H is the habitat quality
value taken from the HSM. This transformation was applied
to emphasize high habitat quality values and ensure that
conductance in the circuit was large enough to separate
between high current flow compared to low current flow or
bottlenecks in the current density map (Koen et al., 2014).
Note that Eq. 1 results in small contrast between the high and
intermediate values of habitat suitability, and high contrasts
between intermediate and low values of habitat suitability, as
recommended by Keeley et al. (2016).

Least-cost paths model the “expense” of an individual traveling
between any pair of sites as the maximum cumulative sum
of the conductance values C. Commute distances (van Etten,
2017) are calculated as the expected random-walk commute
time between two sites. Both metrics were calculated using
the “gdistance” package (van Etten, 2017) based on the HSM
value (Figure 4).

Lastly, we considered a model of isolation by distance (IBD)
as a null model to compare to the above-mentioned alternative
approaches for quantifying landscape connectivity. This IBD
model used pairwise Euclidean distances between sampling sites
as a single predictor.

Statistical Modeling
We generated MLPE models using pairwise RST as a response
variable and patch metrics (PMM3 or PMM2), surface metrics,
LCP, CD, or Euclidean distance as explanatory variables. MLPE
models (Clarke et al., 2002) include two random effects for
each pairwise distance, one for each sampling location, to
account for the multiple pairwise distances per site (Row
et al., 2017). We used a Box–Cox transformation (Box and
Cox, 1964) on the RST values to normalize residuals and
equalize variance to ensure that we meet statistical assumptions
(Osborne and Carolina, 2010). Explanatory variables met
normality assumptions and were not transformed, but they
were scaled prior to modeling. We conducted a test for
residual spatial autocorrelation for the full MLPE model
for each type of metrics (Jaffé et al., 2019) and found
no significant autocorrelation. Because the same sampling
sites were considered in each submodel, this satisfies the

spatial independence assumption for all submodels, i.e., model
selection with subsets of the predictors included in the
full model. All models were fitted with the “lme4” package
(Bates et al., 2015) in R.

We started with fitting a full MLPE model for each
modeling approach (GSM, PMM3, PMM2, LCP, CD, and IBD)
incorporating all explanatory variables per approach. We used
MLPE models as Row et al. (2017) found that this method
did not bias model selection toward more complex models
as reported for other distance-based modeling frameworks
(Franckowiak et al., 2017). To select the best model for each
approach, we used model dredging, which considers all possible
submodels of the full model (except for LCP, CD, and IBD
where only one predictor was available). In order to ensure
that model predictors were not collinear, we assessed collinearity
during model selection for each model independently, requiring
pairwise linear correlations r among predictors to be less
than r < 0.6. This ensured a systematic selection of the
best model under each paradigm by considering all possible
combinations of all explanatory variables while addressing
multicollinearity. The best models for the GSM and PMM
approaches were selected as the model, fitted with maximum
likelihood (ML), with the lowest Akaike’s Information Criterion,
AIC (Burnham and Anderson, 2004).

For the best model for each approach, we calculated
marginal and conditional R2 values with the ‘MuMIn’ R
package (Barton, 2009). Marginal R2 values represent the
amount of variation explained by the fixed effects of the
model (Edwards et al., 2008), after accounting for random
factors and based on models refitted with REML. A high
marginal R2 indicates a higher predictive power of the fixed
effects in the model, whereas conditional R2 indicates the total
variance explained by fixed and random factors combined. To
provide an estimate of the pairwise dependency effect within
each model, we calculated Spearman’s rho (ρ) with the “rhoR”
(Eagan et al., 2019) package in R. If rho was zero, we would
not need to include population effects, and the closer rho is
to 1, the more important it is to account for the pairwise
dependency. All R scripts are available at https://zenodo.org/
record/3369727.
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FIGURE 4 | Maps of (A) conductance surface across the state of Indiana. (B) Current density map with sampling sites as nodes, and zoomed-in extent of the
southern study sites in Indiana showing: (C) shortest paths of multiple corridors connecting between nodes and (D) the least cost paths plotted on the current
density map.

RESULTS

The GSM models explained the pairwise genetic distances in
the longhorn beetle population more effectively than any of
the other approaches. The best model using surface metrics
within the GSM approach included dominant texture direction
(Std) and texture direction index (Stdi), with AIC = −68.8, a
marginal R2 value of m.R2 = 0.08 and a conditional R2 value of
c.R2 = 0.26. One explanatory variable was included in all of the
top three GSM models; the texture direction index (Stdi). The
top three GSM models had the lowest AIC among all modeling
approaches (Table 3).

Models based on categorical representation of the landscape
(PMM) explained the pairwise genetic distances in the longhorn
beetle population slightly less effective than the GSM. The
best model using landscape metrics within the PMM approach,
based on three classes (PMM3; habitat, complementary habitat,
and non-habitat), included only the splitting index (split) as
explanatory variable, with AIC = −64.5, a marginal R2 value
of m.R2 = 0.05 and a conditional R2 value of c.R2 = 0.21. The
splitting index was included in all of the top three PMM3 models.
The AIC value of the best model for the PMM approach with only
two land cover classes (PMM2; treating non-habitat as missing
values) was similar (AIC = −64.2, m.R2 = 0.07, c.R2 = 0.29),
however, the included metrics differed. The best model included
the mean core area index (cai_mn), patch density (pd), and patch
richness density (prd) (Table 3).

For the resistance-based approaches, models were
independently run with CD and LCP as the sole explanatory
variables. Both of these models poorly explained the pairwise
genetic differences in the beetle population. However, the CD
model performed better than the LCP model as indicated by the
AIC, and both R2 values (see Table 3).

Finally, distance alone as a predictor in the IBD model was the
least effective in explaining the pairwise genetic differences in the
beetle population among all other modeling approaches except
for LCP (see Table 3).

DISCUSSION

Landscape Modeling Paradigms in
Landscape Genetic Studies
This study compared the ability of different approaches to model
habitat heterogeneity and functional connectivity for the banded
longhorn beetle, an arthropod that relies on the proximity of
forest and open habitats. In agreement with our predictions, we
found that conceptually different approaches to model landscape
heterogeneity and connectivity (Figure 1) differed in their ability
to explain the spatial genetic structure of this species. We found
that GSM applied to a continuous HSM were the most effective
at explaining pairwise genetic distances as a proxy for gene flow
across the landscape, followed by landscape metrics calculated
from the discrete PMM, whereas analysis of the HSM with LCP
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TABLE 3 | Summary of the MLPE model outputs for each approach. Only the top three from each multivariate model structure are included.

Approach Explanatory variables AIC 1AIC w m.R2 c.R2 ρ

GSM RST ∼ Std + Stdi −68.8 0 0.030 0.08 0.26 0.49

RST ∼ Ssk + Std + Stdi −68.5 − − 0.09 0.27

RST ∼ Sfd + Stdi −68.4 − − 0.08 0.25

PMM3 RST ∼ split −64.5 4.3 0.003 0.05 0.21 0.46

RST ∼ mesh + split −63.2 − − 0.06 0.21

RST ∼ core_mn + split −63.0 − − 0.05 0.21

PMM2 RST ∼ cai_mn + pd + prd −64.2 4.6 0.003 0.07 0.29 0.48

RST ∼ cai_mn + np + pd + prd −63.5 − − 0.08 0.31

RST ∼ cai_mn + ed + np + pd + prd −63.6 − − 0.11 0.35

CD RST ∼ CD −61.9 6.9 0.001 0.03 0.23 0.48

IBD RST ∼ euclidean distance −60.1 8.7 0.0003 0.005 0.21 0.47

LCP RST ∼ LCP −59.8 9.0 0.0003 0.003 0.21 0.48

GSM, gradient surface model; PMM, patch mosaic model with three (PMM3) or two classes (PMM2); CD, commute distance model; IBD, isolation by distance model;
LCP, least cost patch model), sorted by the AIC value of the best model for each approach. The response variable is the pairwise genetic distance (RST). For more
information about the explanatory variables, see Tables 1, 2. Based on models fitted with maximum likelihood (ML): AIC, Akaike Information Criteria; 1AIC, delta AIC; w,
AIC evidence weights. Based on models fitted with restricted maximum likelihood (REML): m.R, marginal R2 values; c.R2, conditional R2 values; ρ, Rho, which measures
the strength of the population effects.

performed worse than the same analysis using CD and a null
model of isolation by distance (IBD).

Modeling landscape resistance to gene flow has become a main
focus of landscape genetic studies (Spear et al., 2010). While
many studies consider alternative resistance values assigned
to discrete landscape features, such as land-use/land-cover
classes, or alternative response functions to continuous variables,
such as slope (Austin, 2002), little attention has been given
to comparing alternative landscape representations and their
impact on our ability to model gene flow in heterogenous
landscapes. Here we used the example of a species that requires
landscape complementation to showcase and compare little-used
alternatives that may be used to represent and integrate multiple
habitat requirements. In this study we demonstrated that for
banded longhorn beetles, gene flow across the landscape was
best explained by a landscape modeling approach that considers
gradients in habitat suitability, rather than discrete patches.
Despite the large conceptual differences, however, the differences
between these two models, as measured by AIC, were small,
especially compared to the much lower performance of RBM and
the null model of IBD. Our results also illustrate that different
genetic distance metrics might influence landscape models’
structure and performance (see Supplementary Material). Thus,
the choice of a reliable genetic distance metric as a proxy of
gene flow in landscape genetic studies is important and has to
be done with insight into relevant evolutionary models of the
molecular marker(s) being used. Yet, comparing the behavior
of different genetic distances in landscape models (e.g., Séré
et al., 2017) remains a topic for investigation that is outside the
scope of this study.

Gradient Surface Metrics (GSM)
We found that the top three gradient surface metrics models
(GSM) had the lowest AIC values overall and therefore, the
GSM approach was the most effective at explaining gene
flow across the landscape for banded longhorn beetles. GSM

(Table 1) can provide a complex characterization of the effect of
landscape heterogeneity on gene flow. This is based on two steps:
building the HSM with patch-based (discrete) and gradient-
based (continuous) landscape features, including landscape
complementation, and evaluating them within a biologically
relevant neighborhood (moving window analysis). The surface
metrics then provides a suite of sophisticated measures for
characterizing heterogeneity and spatial gradients in habitat
suitability, including metrics that have no analogs from the PMM
(McGarigal et al., 2009; Abdel Moniem and Holland, 2013). In
this study, GSM models predictively outperformed PMM models.
However, this increased complexity of landscape heterogeneity
quantification comes at the cost of less intuitive interpretation
compared to the PMM approach.

Skewness (Ssk) is an amplitude metric that measures whether
high (peaks) or low (valleys) values of the habitat suitability
surface dominate the landscape. It is an important descriptor of
the degree and nature of land cover dominance in the landscape.
The dominant texture direction (Std) and texture direction index
(Stdi) are important configuration metrics that describe the
orientation of the dominant directionality of habitat suitability
surface in the landscape. These metrics can be informative if
repeated changes in habitat suitability exist in a certain direction.
Habitat features are driven by these landscape textures (Adra
et al., 2013) and they are therefore important in species ecology
and distribution, but the interpretation of these quantities may
not be intuitive. The information on dominant direction of
habitat suitability surface in the landscape is unique to these
two GSM metrics. The surface fractal dimension (Sfd) is a
bearing metric that describes the radial texture of the surface
(angles of peaks) based on Fourier analysis (McGarigal et al.,
2009). Biologically, this could be interpreted as the degree of
complexity of high habitat suitability (surface peaks) spread
measured from the center of a given landscape. Collectively,
the amplitude, configuration, and bearing metrics of GSM are
very powerful descriptors of both spatial and non-spatial aspects
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of heterogeneity in the landscape. Yet, the biological relevance
of these GSM metrics is not necessarily easy to conceptually
interpret at the landscape scale and more research on the
behavior of these metrics is required, especially in a landscape
genetics context to further understand their biological and
ecological relevance.

One metric, texture direction index (Stdi), was included
in the top-three GSM models. The texture direction index
describes the spatial structure of the HSM surface as a proportion
of the dominant direction of surface roughness, which is
indicative of changes in habitat suitability in different compass
directions. Although this variable predominantly explains
landscape texture, not habitat, the two are routinely interrelated
(e.g., Adra et al., 2013).

This study used the same HSM as Abdel Moniem et al.
(2016), which integrated multiple discrete and continuous
habitat characteristics in a moving-window analysis. While this
model explicitly considered percent forest, the availability of
complementary, open habitat was not quantified directly, but
subsumed in the landscape splitting index (McGarigal et al., 2009)
which considers all cover types simultaneously. It is possible that
a more explicit quantification of the availability and adjacency of
forest and open habitat could further improve the performance
of our GSM models.

Landscape Metrics and the PMM
The best PMM models performed almost equally as well as
the best GSM models. Despite a lower model AIC score, the
PMM may have an interpretational advantage over the GSM.
The biological meaning of specific landscape metrics in the
PMM approach (e.g., intermixing of land cover classes) is easier
to interpret than the properties of a habitat suitability surface
represented by GSM in a GSM approach (e.g., surface roughness).
For instance, the top three PMM3 models all included the
splitting index. Note that for the PMM3 model, the index was
calculated as a single value for each ellipsoid, whereas for the
HSM used above, a separate value of the index was calculated
within a moving window centered around each grid cell, and
the gradient in the local aggregation of patches measured by
this index surface was combined with other variables into
the HSM. The GSM then characterized the properties of this
combined surface. In contrast, the interpretation of a single value
for the splitting index for PMM3 per ellipsoid is much more
direct and intuitive.

Models using discrete landscape metrics may be valuable for
species that require landscape complementation, especially in
landscapes dominated by human influence that are quite well
described by a patch mosaic. Interestingly, AIC values were
similar between a classification scheme in which non-habitat
for the banded longhorn beetle was classified as a third cover
class (PMM3) compared to a classification scheme in which
non-habitat was classified as missing values (PMM2). The latter
resulted in a considerably higher explanatory power (values for
marginal and conditional R2). However, the top PMM2 models
also had more predictors than the top PMM3 model, resulting
in the best-ranked PMM model being PMM3 with a single
predictor. This may suggest that the PMM approach is quite

robust toward the definition of land cover classes, or that neither
approach is optimal.

Historically, landscape metrics (reviewed in McGarigal et al.,
2002; Uuemaa et al., 2009) have been developed for a single
cover type (class-level metrics) or for the mosaic of all cover
types present in a map (landscape-level metrics), but not for a
combination of two cover types (complementary habitat types,
such as forest and open land) embedded among other types (non-
habitat). This may have led to a trade-off between our PMM3
and PMM2 models, where neither is optimally suited to capture
landscape complementation. For instance, the interspersion and
juxtaposition index measure the “intermixing of land cover
classes” (Table 2; McGarigal et al., 2002; Hesselbarth et al.,
2019) and thus, biologically, seems ideal for quantifying the
proximity of forest and open cover types, the two complementary
habitat types used by banded longhorn beetles. In the PMM3
model, however, the index does not distinguish between the
interspersion of forest with open habitat and of forest with non-
habitat or open habitat with non-habitat. It is logical to address
this by coding non-habitat as missing values, however, then the
index can no longer be calculated. This highlights the need
for developing landscape metrics that can specifically address
landscape complementation.

Resistance-Based Models (LCP and CD)
The RBM (LCP and CD) performed much worse than the
GSM and PMM models. This seems intuitive since RBM reduce
all information describing habitat heterogeneity and landscape
complexity into a single metric (LCP or CD). Thus, these models
might be suboptimal for describing landscape complementation
in complex landscape compared to the GSM and the PMM.
LCP and CD models are routinely and successfully applied
to modeling gene flow across heterogeneous landscapes (e.g.,
Wang et al., 2009). While the use of a HSM to derive a
resistance or conductance surface is not new (McRae, 2006;
McRae et al., 2008), it differs from the more commonly used
assignment of resistance values to landscape features, such as
discrete cover types, and we cannot exclude the possibility
that a different assignment of resistance values would improve
the performance of LCP or CD models. It is also important
to realize that habitat suitability does not always indicate
the degree of landscape permeability to dispersal because the
movement of organisms in the landscape is different than habitat
selection (Mateo-Sánchez et al., 2015). Therefore, incorporating
reciprocal causal models in a multi-model framework rather
than just direct conversion of habitat suitability values may
be warranted. Strikingly, CD explained 3% of genetic variation
in banded longhorn beetles, which is considerably less than
the best GSM or PMM models but much better than the
LCP or the null model of IBD, which explained 0.3 and
0.5%, respectively. The genetic signal explained by CD suggests
that the HSM had some validity as a representation of
resistance to gene flow in banded longhorn beetles. Future
research should explore to what degree the relatively low
performance of LCP or CD, as applied to a HSM based on
moving window analysis, can be generalized to other systems.
Further research should also test for the effect of alternative
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scaling, e.g., by using a genetic algorithm to optimize the
scaling function used to translate habitat suitability values
into conductance or resistance values (e.g., “ResistanceGA”;
Peterman, 2018).

The poor performance of the IBD model, which does
not rely on assumptions about resistance values, suggests
that in this system, environmental heterogeneity is more
important than distance alone in explaining gene flow,
and that ‘ecological distance’ (or isolation by resistance,
IBR) as experienced by banded longhorn beetles is not
confounded with geographic distance (IBD). Note that
we did not consider an isolation by environment (IBE)
model in this study as we focused on the quantification
of habitat heterogeneity of the intervening landscape
between sites. In contrast, IBE models focus more on site
specific environmental and ecological descriptors to model
genetic structure independently from geographic distance
or the nature of the intervening landscapes between sites
(Wang and Bradburd, 2014).

Anthropocene
Anthropogenic landscape change directly impacts the structure
and function of natural ecosystems (DeFries et al., 2004; Lee
et al., 2006; Hobbs et al., 2009). For example, some landscapes
have been delimited into grid-like blocks with sharp edges
resulting in losses of natural habitat, and biodiversity (Ellis
et al., 2012). Therefore, in light of the rapid progression
of contemporary landscape change, it has become essential
to identify approaches that quantify spatial heterogeneity in
biologically meaningful ways. Relevant and comprehensive
descriptors of landscape heterogeneity should consider both the
landscape in context and the focal species’ requirements. As
our study demonstrates, for species with complex biological
requirements such as landscape complementation, metrics
based on gradient surface models may be better able to
capture pertinent landscape features. As technology, access to
landscape data, and the resolution of genetic data, continues
to improve it seems plausible that gradient surface models
will continue to outperform PMMs or RBM especially in
complex heterogenous landscapes. However, other modeling
approaches might be more relevant when human footprints
lead to patchy landscapes with more features and sharp
edges (e.g., in agroecosystems: Weibull et al., 2003; Mandelik
et al., 2012). In the interim, case studies, such as the one
presented here, continue to be important for understanding
and describing complex landscape heterogeneity, and for testing
the efficacy of species-specific models for landscape genetics
analyses. Our findings can inform future studies that seek to
model habitat connectivity in complex heterogeneous landscapes
as natural habitats continue to become more fragmented in
the Anthropocene.
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